metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ying Liu,* Jian-Min Dou, Daqi Wang, Xian-Xi Zhang and Lei Zhou

College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China

Correspondence e-mail: yingliu@lctu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.039 wR factor = 0.103 Data-to-parameter ratio = 9.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaqua(pyridine-2,6-dicarboxylato)nickel(II)

The title compound, $[Ni(C_7H_3NO_4)(H_2O)_2]$, has been prepared by the hydrothermal reaction of nickel(II) chloride and pyridine-2,6-dicarboxylic acid. It is isostructural with the analogous Cu^{II} complex.

Comment

The title compound, (I), is isostructural with its Cu^{II} analogue (Sileo *et al.*, 1997; Koman *et al.*, 2001; Wang *et al.*, 2003). The Ni^{II} atom is pentacoordinated in an approximately squarepyramidal geometry (Table 1), chelated by two O atoms and one N atom from the pyridine-2,6-dicarboxylate ligand, and two water molecules (Fig. 1). Hydrogen bonds between the water molecules and the O atoms of the carboxyl groups (Table 2) link the molecules into layers in the *ac* planes (Fig. 2).

Experimental

A mixture of nickel(II) chloride (0.5 mmol), potassium hydroxide (0.5 mmol), pyridine-2,6-dicarboxylic acid (0.5 mmol) and H_2O (8 ml) in a 25 ml Teflon-lined stainless steel autoclave was heated at

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Received 12 August 2006 Accepted 14 August 2006 413 K for 2 d, and then cooled to room temperature. Green blockshaped crystals of (I) were obtained with a yield of 36%. Elemental analysis found: C 32.16, H 2.45, N 5.22, O 24.66, Ni 24.32%; calculated: C 32.33, H 2.69, N 5.39, O 24.63, Ni 24.46%

V = 426.51 (6) Å³

 $D_x = 2.023 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 2.28 \text{ mm}^{-1}$

T = 293 (2) K

Block, green $0.40 \times 0.37 \times 0.33 \text{ mm}$

 $R_{\rm int} = 0.024$

 $\theta_{\rm max} = 25.1^\circ$

Z = 2

Crystal data

$$\begin{split} & [\mathrm{Ni}(\mathrm{C}_{7}\mathrm{H}_{3}\mathrm{NO}_{4})(\mathrm{H}_{2}\mathrm{O})_{2}] \\ & M_{r} = 259.85 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 4.7042 \ (4) \ \mathring{A} \\ & b = 8.9656 \ (7) \ \mathring{A} \\ & c = 10.3228 \ (8) \ \mathring{A} \\ & \alpha = 81.103 \ (2)^{\circ} \\ & \beta = 85.720 \ (2)^{\circ} \\ & \gamma = 83.333 \ (2)^{\circ} \end{split}$$

Data collection

Bruker SMART CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.418, T_{\max} = 0.471$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.103$ S = 1.021507 reflections 153 parameters H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0709P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.63 e Å^{-3}$ $\Delta\rho_{min} = -0.74 e Å^{-3}$

2247 measured reflections

1507 independent reflections

1328 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O5-H51···O1 ⁱ	0.89 (3)	1.85 (3)	2.729 (4)	167 (6)
$O5-H52\cdots O2^{ii}$	0.89 (3)	2.22 (5)	2.970 (4)	142 (6)
O6−H62···O3 ⁱⁱⁱ	0.89 (3)	1.95 (3)	2.759 (4)	150 (4)
$O6-H61\cdots O4^{iv}$	0.89 (3)	1.84 (3)	2.722 (3)	169 (4)

Symmetry codes: (i) -x + 1, -y, -z; (ii) x + 1, y, z; (iii) x - 1, y, z; (iv) -x + 2, -y, -z + 1.

H atoms bound to C atoms were placed in idealized positions and allowed to ride during subsequent refinement, with C-H = 0.93 Åand $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of the water molecules were located in a difference Fourier map and refined with isotropic displacement parameters. The O-H distances were restrained to a

Figure 2

View of (I) along the a-axis direction, showing hydrogen-bonded layers in the ac planes. H atoms are omitted and hydrogen bonds are shown as dashed lines.

common refined value, and the $H \cdots H$ distances were restrained to 1.63 times that value. The refined O-H distance is 0.89 (3) Å.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1999); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Chinese Natural Science Foundation (grant No. 20501011) and Liaocheng University (grant No. 31801) for financial support. In addition, we thank Professor Jianmin Dou for assistance.

References

Bruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Koman, M., Moncol, J., Hudecova, D., Dudova, B., Melnik, M., Korabik, M. & Mrozinski, J. (2001). Pol. J. Chem. 75, 957–964.

Sheldrick, G. M. (1996). SADABS. Version 2.05. University of Göttingen, Germany.

Sileo, E. E., Rigotti, G., Rivero, B. E. & Blesa, M. A. (1997). J. Phys. Chem. Solids, 58, 1127–1135.

Wang, W.-Z., Liu, X., Meng, Y., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Wang, G.-L. (2003). Chem. Res. Chin. Univ. 19, 6–9.